The Ward property for a P-adic basis and the P-adic integral

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

THE p-ADIC EISENSTEIN MEASURE AND SHAHIDI-TYPE p-ADIC INTEGRAL FOR SL(2)

Conjecture 1 (Langlands). To each reductive group G over a number field K, each automorphic (complex) representation π of G, and each finite dimensional representation r of the (complex) group G, there is defined an automorphic L-function L(s, π, r), which enjoys an analytic continuation and functional equation generalizing the Riemann zeta function πΓ(s/2)ζ(s) (or Artin’s L-function L(s, σ), w...

متن کامل

On p-adic path integral

Feynman's path integral is generalized to quantum mechanics on p-adic space and time. Such p-adic path integral is analytically evaluated for quadratic Lagrangians. Obtained result has the same form as that one in ordinary quantum mechanics. 1. It is well known that dynamical evolution of any one-dimensional quantum-mechanical system, described by a wave function Ψ(x, t), is given by Ψ(x ′′ , t...

متن کامل

A NOTE ON p-ADIC INVARIANT INTEGRAL IN THE RINGS OF p-ADIC INTEGERS

In [2], I constructed the p-adic q-integral I q (f) on Z p. In this paper, we consider the properties of lim q→−1 I q (f) = I −1 (f). Finally we give the some applications of I −1 (f) and integral equations for I −1 (f). These properties are useful and worthwhile to study Euler numbers and polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(03)00426-8